- Analiza
- Ważne
Przeciwlotnicza Pilica w "Tarczy Polski" [ANALIZA]
Niedawne podpisanie aneksu w sprawie rozpoczęcia produkcji zestawów Pilica jest dobrą okazją do omówienia sposobu działania tego systemu. Żeby dokonać jednak właściwej oceny, konieczne jest zestawienie kilku (czasem sprzecznych) obszarów, takich jak spełnienie przez niego stawianych w wojsku wymagań, wpięcie w cały system dowodzenia i ochrony obszaru powietrznego, niezbędne jest nawet wzięcie pod uwagę uwarunkowań gospodarczo-ekonomicznych.

Sam PSR-A Pilica można uznać za efekt połączonych wymagań Szefostwa Wojsk Obrony Przeciwlotniczej Dowództwa Generalnego Rodzajów Sił Zbrojnych (wcześniej Szefostwa Wojsk OPL MON) i gruntownej analizy przeprowadzonej przez specjalistów z zakresu techniki plot. Wojskowej Akademii Technicznej (WAT). W wyniku ich współpracy w 2006 roku powstały wstępne założenia, a w 2007 roku zapoczątkowano prace badawczo-rozwojowe dofinansowane przez Ministerstwo Nauki i Szkolnictwa Wyższego w latach 2008-2009, a następnie (już jako PSR-A Pilica) w ramach XII Konkursu Projektów Rozwojowych. Natomiast w 2011 roku nadzór nad realizacją i dofinansowanie przejęło Narodowe Centrum Badań i Rozwoju.
Już w 2010 roku wstępnie zakończono prace badawcze demonstratora technologii Aparatury Wspomagania Procesu Kierowania Ogniem tego systemu oraz utworzono konsorcjum. Liderem został Wydziału Mechatroniki i Lotnictwa WAT (WMiL WAT ) a dodatkowo w skład weszły Zakłady Mechaniczne Tarnów S.A. (ZMT) i Bumar Sp. z o.o.
Z czasem liderem zostały ZMT, a do nowego konsorcjum dołączyli inni wykonawcy/poddostawcy, jak m.in. PCO S.A., CRW Telesystem-Mesko Sp. z o.o., Prexer Sp. z o.o., Transbit Sp. z o.o., PIT-RADWAR S.A., WZŁ nr 2 S.A. czy Jelcz Sp. z o.o.
W Programie Modernizacji Technicznej Sił Zbrojnych RP na lata 2013-2022 przewidziano zakup do 2019 roku sześciu baterii systemu Pilica w ramach programu operacyjnego „Obrona przeciwlotnicza i przeciwrakietowa”.
W 2012 roku ZMT zawarło z Ministerstwem Skarbu Państwa umowę na „Wdrożenie do produkcji seryjnej PSR-A Pilica", współfinansowaną przez Ministerstwo Gospodarki (w ramach programu operacyjnego – Innowacyjna gospodarka).
Kolejno w 2014 roku ukończono badania demonstratora technologii Przeciwlotniczego Zestawu Rakietowo-Artyleryjskiego (PZRA) ZUR-23-2SP Jodek-SP, a w Inspektoracie Uzbrojenia MON (IU MON) zakończono fazę analityczno-koncepcyjną nowego systemu.
Pod koniec 2015 roku z kolei zakończono badania zakładowe PSR-A Pilica, co umożliwiło dokonanie jego oceny przez MON. M.in. strzelano z armat do imitatorów celów powietrznych typu ICP-1/ICP-R (o prędkości lotu do 395 m/s) oraz wykrywano i naprowadzano uzbrojenie na aparat Szogun, wchodzący w skład systemu Vermin. Testom poddano też Stanowisko Dowodzenia (SD) oraz proponowany system przekazywania danych w baterii (w tym współpracę z radiolokatorem Soła).
W 2016 roku IU powołał specjalną komisję do weryfikacji oceny zgodności i celowości realizacji tego projektu, a następnie Zespół Sterujący z IU przyjął i zatwierdził Projekt Wykonawczy na PSR-A Pilica. Oznaczało to rozpoczęcie produkcji i dostaw sześciu kompletnych baterii (6 stanowisk dowodzenia, 36 jednostek ogniowych, 6 stacji radiolokacyjnych, oraz ok. 60 pojazdów), rozłożony na lata 2019-2022. W ramach aneksu do I fazy umowy, wprowadzono zapisy o zastosowaniu alternatywnych rozwiązań w zakresie stacji radiolokacyjnej, systemu teleinformatycznego oraz funkcjonalności samej jednostki ogniowej.
W ten sposób krótko można przedstawić historię powstania nowego systemu przeciwlotniczego bardzo krótkiego zasięgu (VSHORAD), który docelowo ma zapewnić obronę dla baz wchodzących w skład Polskich Sił Powietrznych. Może też zapewnić osłonę dla np. baz logistycznych, stanowisk dowodzenia, czy nawet walczących pododdziałów rodzajów wojsk.
Jako zintegrowana całość zapewnia on dozorowanie przestrzeni powietrznej, wykrywanie i śledzenie różnych obiektów powietrznych (również w specjalnych dla nich uwarunkowaniach technicznych), czy osłonę własnych maszyn lądujących lub startujących z ochranianych lotnisk. Jest zdolny do zwalczania mikro- i mini- BSP, samolotów i śmigłowców i pocisków manewrujących, ale również wybranych celów naziemnych. Odpowiednio rozstawiony pojedynczy system może bronić nawet do 350 km2 obszaru.
Opis konstrukcji
Docelowo zakłada się, że w skład pojedynczej baterii systemu wchodzić będzie sześć jednostek ogniowych, połączonych sieciocentrycznym systemem dowodzenia i kierowania ogniem. Każde taka jednostka ogniowa jest modułem autonomicznym i automatycznym zarazem, zbudowanym w oparciu o PZRA ZUR-23-2SP Jodek. Dodatkowo, w każdej baterii znajdą się wybrane ciągniki artyleryjskie zestawu, SD, stacja radiolokacyjna oraz po dwa pojazdy transportowe i amunicyjne.

Na jednostce ogniowej zainstalowano zmodyfikowane, podwójnie sprzężone 23 mm armaty automatyczne sprzęgnięte z dwoma wyrzutniami przeciwlotniczych pocisków rakietowych. Specjalna jednostka ogniowa rakiet wyposażona została w najnowszą elektronikę, w której konstrukcji uwzględniono możliwość zamiany rakiet Grom na Piorun. Wyposażono ją też w dwie butle z czynnikiem chłodzącym głowice tych pocisków.
Rakieta Grom ma zasięg od 500 do 5000 metrów i wysokości zwalczania celów od 10 do 3500 metrów (od 10 do 2500 metrów dla samolotów odrzutowych). Na kursie zbliżeniowym można za jej pomocą zwalczać cele lecące z prędkością 360 m/s, a oddalające się z prędkością 320 m/s. Prawdopodobieństwo rażenia bez zakłóceń wynosi 0,6 (0,4 z zakłóceniami).
Piorun jest bardzo głęboką modernizacją Groma, a przeznaczony jest do zwalczania śmigłowców, samolotów i rakiet skrzydlatych znajdujących się na pułapach od 10 do ok. 4 000 metrów oraz w odległości od 500 do ponad 6 000 metrów. Na kursie zbliżeniowym można za jego pomocą zwalczać cele lecące z prędkością 400 m/s, a oddalające się z prędkością 320 m/s.
W rakietach Piorun dzięki zastosowaniu nowo opracowanych fotodiod i metod detekcji uzyskano wielokrotnie zwiększoną zdolność wykrywania celów. Zapewnia to o ponad dwa razy zwiększenie zasięgu wykrycia i rażenia celu. Zasięg lotu sterowanego przekracza 6000 metrów, a wyższa czułość detektorów, nowa metoda ich chłodzenia oraz optymalizacja algorytmów sterowania rakiety czy zmodyfikowanie jej paliwa dała właśnie takie rezultaty. Wzrosła też precyzja trafienia – badania potwierdziły bezpośrednie trafienie szybkiego celu o długości 1000 mm i średnicy 60 mm podczas strzelania na maksymalnym zasięgu. Dodatkowo zwiększono odporność na zakłócenia termalne i zastosowano laserowy czujnik zbliżeniowy.
Same uzbrojenie artyleryjskie zapewnia szybkostrzelność teoretyczną 2000 strz./min. i prowadzenie skutecznego ognia na maksymalnym zasięgu do 2500 metrów.
Jednym z ważniejszych elementów jednostki ogniowej jest sterownik bezpieczeństwa, czyli autonomiczne urządzenie elektroniczne, odpowiadające za kontrolę całego uzbrojenia. Zapewnia on komunikację z modułem sterowania pociskami rakietowymi i nadzoruje procedury ich użycia oraz prowadzenie ognia z armat. W trybie zdalnym wspólnie z komputerem systemu kierowania ogniem nadzoruje całe uzbrojenie, a w trybie awaryjnym (np. uszkodzenie komputera) odbiera dane z klawiatury celownika CP-1SP i generuje komendy sterujące obwodami uzbrojenia. Jest on również zabezpieczony przed nieautoryzowanym użyciem (wewnętrznie wbudowany immobilizer) oraz ma obwody zabezpieczające przed przypadkowym oddaniem strzału.

Konstrukcja jednostki ogniowej również zapewnia prowadzenie ognia w trybie manualnym/awaryjnym tylko z wykorzystaniem kolimatorowego celownika programowalnego CP-1SP. W jego skład wchodzi impulsowy dalmierz laserowy o zasięgu 8000 metrów, 12-kanałowy odbiornik nawigacyjny GPS, on sam współpracuje z systemem automatyzacji dowodzenia obroną przeciwlotniczą Rega (lub innym adekwatnym systemem).
Na wchodzącej w jego skład półprzezroczystej płytce są wyświetlane dane informujące o stanie pocisku rakietowego i stolika startowego oraz piktogramy o obiektach znajdujących się w polu widzenia celowniczego.
Jest on dodatkowo wyposażony w celownik rakursowy (maksymalna prędkość celu dla kąta wyprzedzenia na dużym pierścieniu może dochodzić do 150 m/s, na małym zaś do 60 m/s w odległości do 1000 metrów).
Efektywne prowadzenie ognia uzyskuje się dzięki zamontowanej głowicy optoelektronicznej GOS-1 Aurora oraz systemowi kierowania ogniem z autotrackerem i systemem IFF. Właściwe pozycjonowanie zapewnia odbiornik systemu nawigacji satelitarnej GPS HGST-T. W głowicy optoelektronicznej zastosowano kamerę termowizyjną KMW-1 Teja (z chłodzonymi detektorami matrycowymi i pracującą w zakresie 3÷5µm), kamerę TV i dalmierz laserowy.
Na wypracowanie właściwej decyzji do otwarcia ognia wypływają dane uzyskane z systemów zobrazowania sytuacji powietrznej w rejonie działania, napływające komendy kierowania ogniem, informacje o statusie danego stanowiska ogniowego oraz posiadanej amunicji.
W tym miejscu trzeba zaznaczyć, że zamocowanie dodatkowej elektroniki i zestawu rakiet wymusiło dokonanie zmian konstrukcyjnych związanych z wytrzymałością podwozia oryginalnego ZU-23-2 (nie dostosowanego pierwotnie do takich modyfikacji).
Dodatkowo, w skład jednostki ogniowej może wchodzić przenośna konsola zdalnego sterowania (lub komputer obsługi zdalnej) ustawiona na trójnogu. Jest ona z nią połączona za pomocą światłowodu (maksymalna odległość wynosi do 100 metrów). Konsola taka daje możliwość sterowania zestawu, co zasadniczo wpływa na stopień ochrony jego bezpośredniej obsługi.
Pojedynczy system ogniowy jest holowany za pomocą samochodu ciężarowego Jelcz 442.32 lub innej ciężarówki w układzie 4x4. Taka sam typ jest w zasadzie przewidziany jako pojazd transportowy i amunicyjny. W skład jednostki ogniowej wchodzi radar kierowania ogniem.

SD zainstalowano w 15-stopowym kontenerze, wykorzystuje ono elektromagnetycznie izolowaną kabinę roboczą przystosowaną do przetwarzania informacji niejawnych. SD zapewnia wymianę informacji z systemem dowodzenia i kierowania walką szczebla nadrzędnego, dowodzenie podległymi systemami walki, monitorowanie ich aktualnego stanu i realizowanych działań.
Jego kabina jest klimatyzowana i wyposażona w dwa równoległe, analogiczne stanowiska operatorskie (z pulpitami AC-16IP-01). Jedno zajmuje dowódca baterii, drugie operator systemu, na którego ekranie LCD wyświetlane jest zobrazowanie sytuacji taktycznej w oparciu o dane z radiolokatora. Na SD zamontowano szerokopasmową radiostację cyfrową, taką jak np. proponowana R-450C (pracuje w sieci TDMA i współpracuje z łączem transmisji danych standardu Link 11 oraz ma możliwość wprowadzenia Link-16) i routery RP-110. Zapewnia to kompatybilność z układami dowodzenia i obrony przeciwlotniczej NATO. Sama konfiguracja i wyposażenie kabiny SD mogą ulec zmianie, zgodnie z życzeniem zamawiającego. Dodatkowo SD może zostać wyposażone w automatycznie rozwijany i zwijany maszt antenowy o wysokości 15÷17 metrów.
Czytaj też: Jelcz będzie podstawą Pilicy
Sam kontener przewożony jest przez samochód ciężarowy Jelcz 442.32.
W skład rozszerzonego systemu łączności wchodzą podsystemy bezprzewodowe - radiowe i wykorzystujące światłowód. Zapewniają one przesył danych do elementów składowych baterii na odległość do 5000 metrów. Sam system jest odporny na zakłócania, niezawodny w działaniu i zapewnia przesył danych cyfrowych i fonicznych.
Poszczególne jednostki ogniowe mogą mieć własne radiostacje (R-450C lub inne), a automatyczne routery pozwalają na „przełączanie” połączeń pomiędzy wszystkimi aktualnie podpiętymi środkami łączności. Jako rezerwowy środek łączności proponuje się nadal niezawodny telefoniczny polowy kabel lekki (PKL).
Oczywiście, do takiej konfiguracji systemu można też włączać i inne moduły (np. Regę), tak by rozszerzyć same możliwości systemu, ale i wpiąć go w szerszy system zadaniowy zintegrowanej obrony powietrznej kraju.
Dla zapewnienia wymaganej wysokiej mobilności taktyczno-operacyjnej systemu, jego SD i współpracującą stację radiolokacyjną można transportować eksploatowanymi w PSP średnimi samolotami C-130E Hercules, a jednostki ogniowe lekkimi C-295M.
Próba oceny systemu i uwarunkowań jego powstania
Na wstępie trzeba zaznaczyć, że to właśnie MON wybrało kaliber 23 mm dla części artyleryjskie zestawu, pomimo prowadzonych prawie równoległych prac nad ZSSP-35 Hydra, w którym wykorzystano 35 mm armatę automatyczną Oerlikon KDA, produkowaną na licencji w naszym kraju.
Przyczyn takiego stanu rzeczy było zapewne kilka. Zaliczyć do nich możemy posiadanie dużych zapasów 23 mm amunicji, doskonałą znajomość samego systemu artyleryjskiego (jego konstrukcji i warunków eksploatacji), czy udane już sprzężenie go z pociskami rakietowymi Grom (a w następstwie i Piorun).
Ponadto system taki jest bardziej mobilny taktyczno-operacyjnie niż Hydra, ma mniejsze rozmiary i masę i niższy odrzut. Konstrukcja Pilicy pozwala też na zamontowanie na niej głowicy optoelektronicznej zdolnej do wykrywania, śledzenia i naprowadzania uzbrojenia (daje nam to pojedynczy kanał celowania, zwielokrotniony większą liczbą pojedynczych, autonomicznych jednostek ogniowych w każdej baterii). Same niewielkie rozmiary ułatwiają przy tym proces maskowania jednostki ogniowej w różnych obszarach, a koszt produkcji, pozyskania i eksploatacji jest też niższy niż zestawu z 35 mm armatą.
Ponadto poszczególne komponenty czy rozwiązania z niego mogą być z łatwością zaadaptowane do innych, przyszłościowych systemów artyleryjsko-rakietowych bliskiego zasięgu, a on sam nadal zachowuje możliwość dalszego rozwoju.
Do tego wszystkiego dochodzi jeszcze jeden istotny argument - ponieważ zestaw ZU-23-2 i jego rozwojowe odmiany są bardzo rozpowszechnione na świecie, można więc liczyć na pewne możliwości eksportowe lub modernizacje prowadzone na rzecz wielu armii. Trzeba jednak brać pod uwagę silną konkurencję ze wschodu z proponowanymi tam podobnymi rozwiązaniami modernizacyjnymi.
Również istotnym jest fakt, że system ten w prawie 95% wykorzystuje krajowe rozwiązania opracowane dla niego lub adoptowane z innych rozwiązań.
Jeszcze jednym z pozytywnych wyników prac na Pilicą było utworzenie w 2012 roku w ZMT Centrum Badawczo-Rozwojowego, które to obecnie uczestniczy w realizacji i innych projektów, a stale podnosząc swoje możliwości niewątpliwie przyczynia się do pozyskiwania przez wojsko nowoczesnych rozwiązań.
Jednak trzeba zauważyć, że pomimo iż wszystkie stanowiska ogniowe mogą zdalnie naprowadzać się w trybie automatycznym na jeden cel lub na różne, w zależności od przyznanych im stref dozoru, to decyzja o ostatecznym otwarciu ognia należy do człowieka, co jest z jednej strony elementem krytycznym systemu, a z drugiej ogranicza jego czas reakcji.
Choć armaty traktowane są jako środek ogniowy uzupełniający, to zastosowany w nich kaliber 23 mm wprowadza jednak wiele ograniczeń. Trudno jest bowiem przy tak małej amunicji zwiększyć jej skuteczność w niszczeniu/obezwładnianiu różnych celów, a dodatkowo zastosować różne metody jej programowania i naprowadzania.
Same jednostki ogniowe są przy tym zestawami w zasadzie odkrytymi, wrażliwymi na zmienne/trudne warunki atmosferyczne panujące np. w miejscach ich eksploatacji (szczególnie chodzi tu o elementy elektroniczne i optoelektroniczne). Samą autonomiczność ogranicza też niewielka jednostka ognia dostępna na pojedynczym stanowisku.

I na koniec warte odnotowania jest to, że pomimo że system kierowania ogniem, wymiany danych czy wykrywania jest stosunkowo nowoczesny i modułowy w budowie, to przy perspektywicznej chęci zamiany uzbrojenia (np. na działko laserowe) zastosowanie obecnej konfiguracji z ZU-23-2 raczej nie jest właściwym rozwiązaniem.
Wraz z PSR-A Pilica wojsko powinno zakupić dedykowany dla niego nowoczesny system szkolno-treningowy (tak by zmniejszyć koszty szkolenia i szybkość zużycia poszczególnych komponentów składowych).
Podsumowanie
Na przydatność PSR-A Pilica wpływa wiele czynników, ale o jego efektywności zadecyduje wpięcie go w kompleksowy system obrony powietrznej, którego jak na razie (pomimo wieloletnich zapowiedzi) nie ma. Zastosowane w nim rozwiązania i sposoby ich efektywnego wykorzystania są z reguły nowoczesne (czego niestety nie można powiedzieć o uzbrojeniu artyleryjskim). Sama perspektywa dalszej modyfikacji jest przy tym również ograniczona wyborem takiej a nie innej konstrukcji wyjściowej. Wojsko wprowadzając do eksploatacji ten sprzęt powinno dogłębnie opracować taktykę jego użycia ze szczególnym uwzględnieniem obecnych i przyszłych możliwości jakie dają nowoczesne systemy uderzenia z powietrza.
WIDEO: Rakietowe strzelania w Ustce. Patriot, HOMAR, HIMARS