Reklama
  • Analiza
  • Wiadomości

IBCS bazą dla wielodomenowej obrony powietrznej

System IBCS, pozyskany przez Polskę w ramach pierwszej fazy programu Wisła, przeszedł niedawno testy sprawdzające zdolność współdziałania z systemami z innych rodzajów sił zbrojnych Stanów Zjednoczonych, w ramach działań wielodomenowych. Z kolei podpisanie umów wykonania zobowiązań offsetowych i umów licencyjnych stanowi krok na drodze do szerszego wdrożenia go do Sił Zbrojnych RP.

Fot:  Northrop Grumman
Fot: Northrop Grumman

System zarządzania obroną powietrzną IBCS, opracowywany na zamówienie Departamentu Obrony Stanów Zjednoczonych przez firmę Northrop Grumman, ma istotne znaczenie również dla Sił Zbrojnych RP. Został on bowiem zakupiony w pierwszej fazie programu obrony powietrznej Wisła, wraz z zestawami obrony powietrznej Patriot. IBCS działa na zasadzie „każdy sensor, najlepszy efektor” i może łączyć ze sobą różne elementy systemu obrony powietrznej, na przykład te należące do zestawów średniego i krótkiego zasięgu, dlatego jego zastosowanie może zostać rozszerzone.

W ostatnich miesiącach miało miejsce kilka ważnych wydarzeń, które mogą wpłynąć na dalszą realizację programu IBCS w Stanach Zjednoczonych, ale i wdrożenie tego systemu w Polsce, w tym w ramach współpracy przemysłowej. Warto przyjrzeć się im bliżej, szczególnie w kontekście realizowanych przez Siły Zbrojne RP programów modernizacyjnych.

IBCS w USA

Po zatwierdzeniu przejścia systemu IBCS do z fazy badawczo-rozwojowej (Engineering and Manufacturing Development) do fazy produkcji seryjnej (Production and Deployment) decyzją Milestone C w styczniu 2021 roku planowane jest zawarcie umowy Low Rate Initial Production/Full Rate Production (LRIP/FRP) na seryjne dostawy komponentów systemu IBCS do U.S. Army. Przewiduje się, że wieloletni kontrakt LRIP/FRP zostanie przyznany jeszcze jesienią tego roku i obejmie okres do roku fiskalnego 2026.

To pozwoli na rozpoczęcie na dużo szerszą skalę dostaw elementów IBCS i modernizacji jednostek obrony powietrznej, tak aby sprzęt przez nie wykorzystywany, taki jak na przykład zestawy Patriot i radary Sentinel v3/v4, funkcjonował w ramach w pełni zintegrowanego systemu obrony powietrznej. Po wprowadzeniu do produkcji seryjnej z IBCS ma być integrowanych również wiele innych elementów, takich jak chociażby zestaw krótkiego zasięgu IFPC Inc-2I.

Równolegle z planowaniem produkcji seryjnej LRIP/FRP, przygotowywane jest też wprowadzenie systemu IBCS do służby operacyjnej. Zgodnie z planem, jako pierwszy status Initial Operational Capability (IOC) ma w 2022 roku osiągnąć 3-43 batalion Patriot, jednostka która obecnie testuje system IBCS. Do służby operacyjnej będzie wykorzystane wyposażenie, które wyprodukowano jeszcze w ramach fazy badawczo-rozwojowej, po dostosowaniu do „produkcyjnej” konfiguracji. To skróci czas osiągania wstępnej gotowości bojowej.

Aby jednak IBCS został zatwierdzony do pełnoskalowej produkcji i osiągnął status wstępnej gotowości bojowej, konieczne jest przeprowadzenie testów Initial Operational Testing and Evaluation (IOT&E), sprawdzających jego działanie w warunkach zbliżonych do bojowych. Testy IOT&E rozpoczną się jesienią tego roku i zakończą na początku przyszłego. Ich pomyślne zakończenie otworzy drogę do skierowania pierwszego wyposażonego w IBCS batalionu do służby operacyjnej. W ramach IOT&E planowanych jest między innymi kilka strzelań.

Jeszcze przed rozpoczęciem IOT&E, armia Stanów Zjednoczonych oraz Northrop Grumman przeprowadziły test systemu IBCS, FT-06 (Flight Test 6), sprawdzający jego funkcjonalności i zdolność integrowania dodatkowych środków rażenia i rozpoznania w środowisku wielodomenowym i pomiędzy różnymi rodzajami wojsk. Przebieg tego testu wykazał bowiem nie tylko zdolności IBCS we współpracy różnych elementów ugrupowania wojsk lądowych (U.S. Army), ale też działania razem z systemami radiolokacyjnymi Korpusu Piechoty Morskiej i Sił Powietrznych Stanów Zjednoczonych.

Test FT-06 miał trzy cele: redukcję ryzyka przez fazą Initial Operational Testing and Evaluation, w której planowane są kolejne strzelania rakietowe (live fire test), sprawdzenie możliwości działania w warunkach silnych zakłóceń elektronicznych oraz przeprowadzenie wspólnej operacji z wykorzystaniem zdolności systemów radiolokacyjnych U.S. Army, U.S. Marine Corps (G/TOR) i samolotu U.S. Air Force (F-35).

Defence24.pl Bill Lamb, director, Multi-Domain Mission Command operating unit, Northrop Grumman dla Defence24.pl 

Scenariusz testu, przeprowadzonego na poligonie White Sands, zakładał wystrzelenie dwóch celów o parametrach pocisków manewrujących, z których jeden miał zagrażać chronionym obiektom, drugi – prowadzić zakłócenia elektroniczne. Obok wyrzutni Patriot z pociskami PAC-3, z IBCS w trakcie testu zintegrowane były:  radar Patriot, dwa radary Sentinel, dwa należące do USAF myśliwce F-35A,  i stacja radiolokacyjna G/ATOR, należąca do U.S. Marines.

Ta ostatnia nie była jednak podłączona do systemu IBCS bezpośrednio, za pomocą zestawów A/B-Kit. Funkcjonowała natomiast w innej sieci kierowania ogniem obroną powietrzną - CEC (Cooperative Engagement Capability), używanej przez U.S. Navy i Marines. Oba systemy zostały połączone z pomocą systemu Joint Track Management Capability (JTMC), rozwijanego przez amerykańską agencję obrony przeciwrakietowej (MDA). To pozwoliło na wypracowanie połączonego obrazu sytuacji powietrznej i zniszczenie celu o parametrach pocisku manewrującego jednym pociskiem PAC-3 w warunkach trwającego ataku elektronicznego.

image
Radar G/ATOR. Fot. Northrop Grumman

Jak podkreśliła w komunikacie MDA, przebieg testu udowodnił możliwość łączenia różnych sieci kierowania ogniem za pomocą użytego jako pomostu systemu JTMC. Należy pamiętać, że w ramach Cooperative Engagement Capabilty funkcjonują nie tylko radary G/ATOR, ale też stacje radiolokacyjne okrętów Aegis czy myśliwce F-35 w „morskich” wersjach F-35B i F-35C. Jeżeli takie rozwiązanie zostanie wdrożone do służby, system IBCS zyska zdolność zwalczania celów wskazywanych również przez sensory morskie. Będzie to też mogło działać w drugą stronę – po połączeniu dwóch sieci, sensory zintegrowane z IBCS, mogłyby obserwować cele zwalczane przez morskie efektory, takie jak chociażby pociski Standard SM-6.

Tego rodzaju działania wpisują się w budowę połączonego i wielodomenowego systemu dowodzenia i kontroli (Joint All Domain Command and Control, JADC2), co stanowi jeden z priorytetów sił zbrojnych Stanów Zjednoczonych. Wiele wskazuje więc na to, że to właśnie IBCS będzie wkładem U.S. Army w JADC2, zapewniając zdolność współpracy w obronie powietrznej (a w przyszłości być może również w wykonywaniu innych zadań, takich jak uderzenia ofensywne) w ramach różnych domen i różnych rodzajów sił zbrojnych.

Rozwój zdolności zintegrowanej obrony powietrznej i przeciwrakietowej w Polsce

Równolegle z rozwojem zdolności systemu IBCS w Stanach Zjednoczonych, podejmowane są kolejne kroki w celu szerszego wdrożenia go w Polsce, w ramach współpracy z krajowym przemysłem. Obejmują one zarówno realizowany już program Wisła, jak i przygotowanie do wykorzystania tego systemu w innych projektach, w tym w programie Narew.

Jeszcze w styczniu poinformowano o przeprowadzeniu z powodzeniem integracji systemu IBCS z radiolinią R-460A polskiej firmy Transbit. Projekt był realizowany z inicjatywy Northrop Grumman i Transbitu. Ma on na celu stworzenie zintegrowanej sieci kierowania ogniem (Integrated Fire Control Network, IFCN), w ramach systemu IBCS. Dzięki temu będzie można zastąpić standardowe amerykańskie radiolinie IFCN polskimi, które wejdą w skład mobilnych węzłów łączności (Mobile Communications Center, MCC). Tak skonfigurowany system zachowa wszystkie zdolności, włącznie z możliwością bezpośredniej wymiany informacji z siecią IBCS U.S. Army, a jednocześnie będzie lepiej dostosowany do polskich wymagań.

W sierpniu bieżącego roku udało się natomiast podpisać pakiet umów wykonania zobowiązań offsetowych oraz umów licencyjnych z Northrop Grumman, związany z pierwszą fazą programu Wisła. W wyniku wdrożenia tych umów w polskim przemyśle zostaną utworzone zdolności związane z wykorzystaniem IBCS. Jest to o tyle istotne, że zgodnie z założeniami oferty dla programu Narew i drugiej fazy programu Wisła (tzw. payload approach), zarówno centra operacyjne (odpowiedniki Engagement Operations Center – EOC), jak i mobilne węzły łączności MCC będą projektowane i integrowane w Polsce, a Northrop Grumman będzie dostarczał do nich jedynie elementy bezpośrednio związane z systemem IBCS. – Podpisanie pakietu umów licencyjnych do programu offsetowego wspiera zdolności polskiego przemysłu, zarówno jeśli chodzi o Centra Operacyjne, jak i Mobilne Węzły Łączności – podkreśla w rozmowie z Defence24.pl Bill Lamb. – To kolejny krok na drodze do integracji polskich zdolności z IBCS – dodaje.

W ramach pakietu umów licencyjnych i offsetowych w krajowym przemyśle zostaną również utworzone zdolności do integracji elementów IBCS z krajowymi komponentami, takimi jak stacje radiolokacyjne i efektory, za pomocą systemów A/B-Kit. Z IBCS w przyszłości zostaną więc zintegrowane stacje radiolokacyjne Sajna oraz efektor, jaki Polska wybierze dla systemu obrony powietrznej Narew. Wcześniej jednak, jeszcze w ramach realizowanej fazy programu Wisła, z tym systemem ma zostać zintegrowana stacja radiolokacyjna krótkiego zasięgu Bystra, która w ten sposób będzie pełniła podobną funkcję, jak radary Sentinel wspierające stacje radiolokacyjne Patriot US Army. O planowanej integracji systemu IBCS z radarem Bystra mówił niedawno w programie SKANER Defence24 płk dr inż. Michał Marciniak, pełnomocnik MON ds. pozyskania i wdrożenia systemu Wisła.

W perspektywie z IBCS będą integrowane również inne polskie sensory, takie jak chociażby stacje radiolokacyjne wczesnego ostrzegania PET-PCL i P-18PL, przewidziane docelowo do wykorzystania zarówno we współpracy z zestawami średniego, jak i krótkiego zasięgu. Możliwe są również inne obszary współpracy z polskim przemysłem.

Jeszcze w maju 2021 roku Northrop Grumman podpisał z firmą Teldat porozumienie o współpracy (Memorandum of Understanding), inicjujące współpracę biznesową obu firm, związaną z rozwojem i integracją systemów dowodzenia. – Rozumiemy, jak ważne jest dla Polski włączanie krajowych zdolności w takich programach jak Narew, dlatego chcemy rozszerzać współpracę z polskimi firmami, zarówno tymi należącymi do PGZ, jak i innymi, jak właśnie TELDAT – podkreślił Bill Lamb.

Zarówno w wojskach lądowych Stanów Zjednoczonych, jak i w Siłach Zbrojnych RP IBCS stanie się kluczowym elementem budowy zintegrowanej naziemnej obrony powietrznej. Kolejnym krokiem może być wykorzystanie tego systemu do działań wielodomenowych. Z punktu widzenia Polski szczególne znaczenie ma zdolność tego systemu do współpracy z myśliwcami F-35, takimi jakie zostały pozyskane w ramach programu Harpia. Po przeprowadzeniu integracji umożliwi to zwalczanie przez system obrony powietrznej celów, które nie są widoczne dla naziemnych radarów, ale zostały wykryte przez myśliwce.

Ostatnie próby integracji IBCS z systemem Cooperative Engagement Capability, używanym przez marynarkę wojenną Stanów Zjednoczonych pokazują jednak również możliwości współpracy z systemami morskimi. W wypadku odpowiedniej konfiguracji, podobną zdolność można by wprowadzić również w Polsce, w odniesieniu do nowo pozyskiwanych fregat Miecznik, które z założenia mają mieć szerokie zdolności obrony powietrznej i przeciwrakietowej. IBCS może więc łączyć naziemną obronę powietrzną z systemami morskimi i lotniczymi, zapewniając zdolności do współpracy wielodomenowej.

Artykuł przygotowany we współpracy z Northrop Grumman.

WIDEO: Rakietowe strzelania w Ustce. Patriot, HOMAR, HIMARS
Reklama
Reklama