- Wiadomości
Telesystem Mesko: Będą nowe polskie rakiety. Lepsze od Piorunów
Spółka Telesystem-Mesko pracuje nad dwiema nowej generacji głowicami samonaprowadzającymi. Dzięki tym rozwiązaniom w polskim przemyśle może powstać unowocześniona wersja chwalonej na Ukrainie rakiety przeciwlotniczej bardzo krótkiego zasięgu „Piorun” oraz cała rodzina amunicji rakietowej naprowadzanej „obrazowo”.
Sukcesy jakie w starciu z rosyjskim lotnictwem odnosili gruzińscy żołnierze wykorzystując polskie, przenośne zestawy przeciwlotnicze „Grom" i ukraińscy żołnierze wykorzystując „Pioruny" są przede wszystkim efektem opracowania w Polsce zupełnie nowej generacji głowic samonaprowadzających. Z wersji na wersję są one skuteczniejsze i bardziej odporne na zakłócenia stosowane przez przeciwnika, już teraz osiągając poziom niedostępny dla większości konkurencyjnych producentów.
Prace nad systemami naprowadzania dla polskich zestawów MANPADS są realizowane głównie w spółce Telesystem-Mesko. Jej najnowszymi wyrobami przygotowanymi do wprowadzenia na wyposażenie Sił Zbrojnych są: głowica samonaprowadzająca multispektralna GSNWK oraz głowica obrazowo-śledząca IIR. Pierwsza z nich może być podstawą do wprowadzenia nowej generacji rakiet przeciwlotniczych klasy MANPADS i pocisków plot krótkiego zasięgu (10-12 km) oznaczanych wstępnie jako „Porun+" lub „Grzmot".
Z kolei głowica obrazowo-śledząca może dać początek całej gamie rakietowych systemów uzbrojenia, które będą mogły nie tylko wykrywać, ale również korzystając z posiadanej bazy danych, „identyfikować" obiekty, wybierając na celu najbardziej wrażliwe miejsce do uderzenia.
Zobacz też
Głowica samonaprowadzająca wielospektralna GSNWK
Głowica samonaprowadzająca wielospektralna GSNWK jest przeznaczona dla rakiet przeciwlotniczych, które z założenia będą miały możliwość wykrywania i śledzenia słabo promieniujących celów, w tym śmigłowców z osłonami cieplnym oraz bezpilotowych aparatów latających. Najważniejszym elementem GSNWK jest trójdetektorowy koordynator z owiewką, wyposażony w detektory chłodzone argonem dwóch zakresów podczerwieni i ultrafioletowego zakresu widmowego, połączone z przedwzmacniaczami.
Koordynator ten realizuje funkcje śledzenia celu, dokonuje automatycznego porównywania osi optycznej żyroskopu z linią wizowania „rakieta – cel" i wypracowuje kąt namiaru. W skład głowicy GSNWK wchodzi dodatkowo blok elektroniki i obudowa. Zadaniem takiego układu jest przede wszystkim:
- automatyczne wykrycie, śledzenie i naprowadzanie na cel w wielu kierunkach (na kursie spotkaniowym, pościgowym lub prostopadłym do linii celowania), zarówno w paśmie podczerwonym jak i ultrafioletowym;
- automatyczne wypracowanie kątów elewacji i wyprzedzenia;
- efektywna dyskryminacja celów rzeczywistych i zakłóceń termalnych (flary, generatory termalne) z wykorzystaniem wspomagania detekcji w paśmie UV;
- częściowo kinematyczna dyskryminacja celów;
- wypracowanie w pobliżu celu sygnału wyprzedzenia przesuwającego punkt trafienia w kadłub celu.
Jednym z najważniejszych powodów wprowadzenia nowej głowicy GSNWK jest konieczność zwiększenie jeszcze bardziej możliwości odróżniania celów faktycznych od zakłóceń termicznych. Zadanie to jest zrealizowane w głowicy przez trójkanałowy, żyroskopowy blok detekcji, który jest sterowany w układzie sprzężenia zwrotnego przez zespół elektroniki dając, w efekcie funkcję śledzenia sygnału celu.

Autor. Telesystem Mesko
Promieniowanie poprzez układ optyki wejściowej kierowane jest do dwóch fotoprzetworników pracujących w różnych zakresach widmowych. Dodatkowo dla odróżnienia sygnału celu i zakłócenia dokonuje się rozdzielania obu sygnałów w czasie poprzez odpowiednie ich rozmieszczenie w przestrzeni obiektywu. Wypracowane w koordynatorze sygnały elektryczne dają informację na temat wielkości i położenia celu oraz flar w obu pasmach promieniowania (rozbieżność kątowa pomiędzy osią optyczną żyroskopu a linią wizowania rakieta-cel).
Wielokanałowość układu daje nie tylko możliwość wyodrębnienia z odbieranych sygnałów właściwego sygnału celu (co czyni go nieczułym na sygnały zakłóceń termicznych o promieniowaniu przewyższającym promieniowanie celu), ale również podnosi skuteczność algorytmów śledząco-selekcyjnych dając dodatkowe tryby pracy głowicy w zależności od pory dnia. Takimi zakłóceniami termicznymi mogą być zarówno źródła naturalne (np. promieniowanie odbite ziemi lub słońca), jak i flary wystrzeliwane z obiektów latających lub odbijane od nich tło - „odblaski".

Autor. Telesystem Mesko
Tak więc funkcja selekcji przed naturalnymi i zorganizowanymi zakłóceniami jest realizowana poprzez:
- Filtrację spektralną drogą optymalizacji zakresów spektralnych pracy głowicy GSNWK z zastosowaniem trzech zakresów spektralnych;
- Filtrację przestrzenno – częstotliwościową przez stosowanie modulacji strumienia światła poprzez raster analizujący fotodetektorów;
- Filtrację dopasowaną do kanału elektronicznego;
- Minimalizacja pola widzenia i przechwycenia celu;
- Metody logicznego rozpoznania celu.

Autor. Telesystem Mesko
By zrealizować te zadania w Telesystem Mesko opracowano wiele nowatorskich rozwiązań. Przykładowo aby optymalnie wykorzystać sygnały pochodzące z zamontowanych w wirującym obiektywie detektorów, sygnały te są wzmacniane jeszcze w obiektywie przez umieszczone tam przedwzmacniacze. Dzięki temu sygnały te nie zanikają w elektrycznym złączu obrotowym, gdy są przekazywane do bloku elektroniki.
Detektory na podczerwień są chłodzone do temperatury -190°C i w tym celu w głowicy są zastosowane skraplarki Joule'a-Thomsona zasilane sprężonym gazem (azotem lub argonem). Proces schładzania detektora jest jednorazowy, a schłodzenie następuje na stanowisku odpalania nośnika. Gaz roboczy podawany jest do głowicy z jednorazowego wysokociśnieniowego zbiornika lub z instalacji pokładowej platformy startowej. W czasie lotu nośnika i pracy wielospektralnej głowicy samonaprowadzającej, detektor utrzymywany jest w niskiej temperaturze dzięki zapasowi skroplonego gazu i wielkość tego zapasu wyznacza czas działania głowicy, a więc również zasięg rakiety.
Głowica obrazująco-śledząca IIR
Kolejnym rozwiązaniem przygotowywanym przez spółkę Telesystem-Mesko jest głowica obrazująco-śledzącej IIR (imaging seekers). Tego rodzaju rozwiązania zalicza się do tzw. czwartej generacji (trzecią są zestawy z głowicą multispektralną). W przypadku głowicy obrazująco-śledzącej IIR obraz celu jest wytwarzany na matrycy składającej się z wielu detektorów ułożonych w szyku: wcześniej liniowym (skanowanym), o obecnie dwuwymiarowym 2D, prostokątnym (focal plane array).
Zobacz też
Sposób otrzymywania w ten sposób obrazu termicznego można porównać do tego jak działa cyfrowy aparat fotograficzny. W głowicy obrazująco-śledzącej IIR następuje jednak porównanie (według określonego algorytmu) założonego modelu wyświetlonego w płaszczyźnie 2D z obrazem otrzymanym na matrycy poprzez system optyczny głowicy poszukującej. Dodatkowo, żeby zwiększyć dokładność naprowadzania w fazie końcowej lotu pocisku, obraz z matrycy jest przetwarzany z wykorzystaniem algorytmów automatycznego wykrywania i śledzenia celu.

Autor. Telesystem Mesko
Rozwiązanie to nie było wcześniej powszechnie stosowane w systemach uzbrojenia ze względu na: problemy technologiczne związane z wytworzeniem niewielkiej matrycy z systemem chłodzenia o odpowiedniej jakości, ograniczenia co do mocy obliczeniowej komputerów pokładowych oraz wysokie koszty. Obecnie wszystkie te trzy czynniki zaczynają mieć coraz mniejsze znaczenie i wprowadzenie głowic obrazująco-śledzących IIR na szerszą skalę jest już tylko kwestią czasu.
W wyścigu tym Polska jest w o tyle uprzywilejowanej sytuacji, że nie startuje od zera, produkując jeden z najlepszych, przenośnych zestawów przeciwlotniczych na świecie („Piorun"). Rozwiązania tam zastosowane mogą być w dużej części zaadoptowane dla potrzeb nowego pocisku, przyśpieszając w ten sposób prace oraz zmniejszając ryzyko pojawiające się przy tworzeniu czegoś zupełnie nowego.

Autor. Telesystem Mesko
Prace te są w Polsce prowadzono dwutorowo. W pierwszej kolejności korzysta się z francuskiego detektora tworząc głowicę „długofalową" LWIR (12 µm) opartą o detektor matrycowy bolometryczny Lynred ATI: Advanced Thermal Imager 640 (640 x 480). Z badań wynika, że takie rozwiązanie zapewnia wykrywania samolotu myśliwskiego z silnikiem odrzutowym co najmniej z odległości 10 km.
Ale planuje się również budowę „polskiej" głowicy w paśmie „średniofalowym" MWIR (3.7μm – 4.8 μm) opartej o chłodzony detektor T2SL Vigo (640 x 512). W tym przypadku zasięg wykrywania samolotu myśliwskiego z silnikiem odrzutowym zwiększa się do ponad 12 km. W obu przypadkach zakłada się wykorzystanie części mechanicznej o takiej samej budowie. Przykładowo stabilizacja systemu ma być dwuosiowa, przegubowa, z zakresem kątowym w azymucie ±30° i w elewacji ±30° oraz z maksymalną prędkością kątową w obu osiach do 30 °/s.
Tego rodzaju głowice naprowadzające mogą być stosowane w bardzo wielu typach amunicji: przeciwlotniczej, przeciwpancernej i przeciwokrętowej. Ich pojawienie się może zmienić sposób działania na polu walki, ponieważ wprowadzona zostanie w ten sposób broń „inteligentna", zdolna do znalezienie konkretnego przeciwnika i eliminująca go poprzez uderzenie w jego najsłabszy punkt. Wszystko to będzie dodatkowo realizowane przy bardzo dużej odporności na stosowane przez nieprzyjaciela środki maskowania i zakłócania aktywnego.
WIDEO: Rakietowe strzelania w Ustce. Patriot, HOMAR, HIMARS